Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.
نویسندگان
چکیده
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.
منابع مشابه
Arabidopsis mutants in sphingolipid synthesis as tools to understand the structure and function of membrane microdomains in plasmodesmata
Plasmodesmata-intercellular channels that communicate adjacent cells-possess complex membranous structures. Recent evidences indicate that plasmodesmata contain membrane microdomains. In order to understand how these submembrane regions collaborate to plasmodesmata function, it is necessary to characterize their size, composition and dynamics. An approach that can shed light on these microdomai...
متن کاملToward atomic force microscopy and mass spectrometry to visualize and identify lipid rafts in plasmodesmata
Plant cell-to-cell communication is mediated by nanopores called plasmodesmata (PDs) which are complex structures comprising plasma membrane (PM), highly packed endoplasmic reticulum and numerous membrane proteins. Although recent advances on proteomics have led to insights into mechanisms of transport, there is still an inadequate characterization of the lipidic composition of the PM where mem...
متن کاملArabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملPlasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana
The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to b...
متن کاملSterols Modulate Cell-to-Cell Connectivity at Plasmodesmata.
Plasmodesmata (PD) connect neighboring plant cells and establish cytoplasmic and membrane continuity throughout most of the plant. Since callose at the neck region of PD regulates plasmodesmatal permeability (De Storme and Geelen, 2014), much research has focused on identifying proteins that affect callose turnover and stability at PD. For instance, the PD callose binding proteins (PDCBs), a fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2015